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Error Models for Stable Hybrid Adaptive Systems

Kumpati S. Narendra, Iraky H. Khalifa
and Anuradha M. Annaswamy
Center for Systems Science, Electrical Engineering

Yale University

o—m»__ee_9'rhc paper presents a unified approach to the design of stable adaptive

algorithms for hybrid, discrete and continuous systems which have two time scales.

Hybrid error models are first analyzed in detail using two distinct approaches
and the results are extended to discrete systems in which the parameters are
adjusted at rates slower than those at which the systems operate. The algorithms
developed wvhen applied to the adaptive control problem are shown to result in
global stability. Simulation results are included and reveal the dependence of
the convergence rates of the various algorithms on the two time-scales. 6—"
Introduction: In the past few years several continuous [1,2] and discrete [3,4]
adaptive algorithms have been developed for the stable identification and control
of linear time-invariant plsnts with unknown parsmeters. In continuous adaptive
systems the plant operstes in continuous time and the controller parameters are
adjusted continuously. Similarly, in discrete adaptive systems, the various
signals as well as the control parameter vector are defined at discrete instants
of time, However, practical adaptive systems, for a variety of reasons, may not
be either purely discrete or purely continuous. For example, recent advances in
microprocessors and related digital computer technology favor the use of discrete

Lod

controls even for continucus systems. Such systems are nov referred to as hybrid ““E

control systems. Further, even in purely discrete systems, the computational a

effort involved quite often necessitates the adjustment of the adaptive control ‘%
parameters at rates significantly slower than that at which the system operates. —t:
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Both hybrid as well as discrete adaptive systems of the latier type can be con-

sidered as systems with two time-scales. Recently, continuous algorithms of an
integral type have been suggested in the literature [5] which can also be inter-
preted as belonging to this class. This paper proposes a unified approach to the
analysis and synthesis of such systeas.

Gawthrop [6] was the first to introduce the concept of hybrid self-tuning
controllers which are partly realized in continuous time and partly in discrete
time. In [7] Elliott presented a method for the indirect control of hybrid adaptive
systems and more recently Cristi and Monopoli [8] attempted the direct hybrid
control of model reference adaptive systems. The central question in both cases
is the global stability of the overall system which can be best analyzed by con-
sidering the behavior of the corresponding error model. The main contribution of
this paper is the detailed analysis of several error models using two distinct
approaches. The insights obtained by this analysis, as well as the specific results
derived provide valuable tools for the synthesis of stable adaptive controllers for
general two time-scale systems and for hybrid adaptive systems in particular.

In section 2, using a Lyapunov approach, different adaptive laws are developed
for the various error models which assure the boundedness of the paramster error
vector. Conditions under which the output and parameter error vectors tend to zero
asymptotically, are also derived and are particularly useful in the identification
problem. The main result of this section, which is most relevant to the control
problem, relates the rate of growth of the output error to that of the norm of the
input vector. While this result is common to all the error models, the method
of proof used in each case is found to be significantly different.

Applications, extensions and modifications of the adaptive algorithms are
treated briefly in section 3. The principal steps in the proof of global stability

of a ﬁvbrid adaptive control system are first outlined in section 3a. The same
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algoritims when .su:l.ub.ly modified are also shown in section 3b to be applicable
to both discrete and continuocus systems with two time~scales. Finally, in section
3c it is shown that the use of time-varying adaptive gain matrices (as in the
well known recursive least-squares approach) in the algorithms does not affect the
stability arguments of the earlier sections.

Section 4 contains detailed simulation results of different error models.
The speed and accuracy of the various algorithms are compared for different values
of the period T during which the control parameters are constant. Approach 1 is
found to be better for small values of T while approach 2 is significantly better
for larger valuss. A convex combination of the two schemes, which can also be
demonstrated to be stable, is suggested as a viable alternative for most adaptive
systems.
2. Error Models:

The dynamical systems discussed in this section are continuous time systems
in which ¢t ell+, the set of all positive real numbers. Let u: u+ -»I‘ and o ." e
be piscewise continuous functions referred to as the input and output functious of
the error models respectively. Let {tk} be a monotonically increasing unbounded

+
sequence in R wuho<rns'r is defined as

=i k k

A
'l.‘k =t~ S When t, = kT (or rk = T) we shall call T the sampling period. Let

+
'Y - 8 -»B- be & piecevise constant function, referrsd to as the parameter error vector

€T <o forkel, vhere T
nax

and assums values
’(t) - ¢k te [tk'thl)

wvhere ’k is a constant vector. The error models described in this section relate
the output error 01. the input vector u and parameter error vector ¢ in terms of

algebraic or differential equations.
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48) __Exxor Model 1:
The first error model is described by the equation
¢ "u(t) = o (0 tel )
k 1 Tl WS}
keN

S T T,
-.l.\. . - ‘L‘l‘-“ “‘-L\-~I

TETTR TR TR VK
Vot

T T
Sel Tl e D

(1)

It is assumed that ¢, (and hence Ok) is unknown, the values u(t) and cl(t) can

be observed at every instant t and Mk ! ¢k+1

- ¢k can be adjusted at t = ¢

ktl’

The objective is to determine an adaptive law for choosing the sequence {Mk}

using all available input-output data so that

1im ol(t) = 0.
t-i.

Approach 1:
Consider the Lyapumov function candidate

T
v(k) = 1/2 Ok Ok

AV 2 voel) - v
Ay 1

=4+ 1o

Choosing the adaptive law

de

‘ b+l e (Du(r)
A‘k . - -:-. f 1 r
k g 1+ u ()ulr)

Yields
1. T
V(W) = -3 ¢y IR IR

vhere ‘k is the symmetric positive semi-definite matrix

Sl T
&, l+u (t)u(r)

nk-%-f dr
k

Q)

3)

4)

&)

(6)

with all its eigenvalues within the unit circle. Since [ZI-&k] > BI for some
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constant 8 > 0,
Av(k)<-.£5¢r ¢, < O a
2 By Bty

Hence V(k) is a Lyapunov function and assures the boundedness of u"k‘ if “¢°I is
a

bounded. Further, since {AV(k)} is a non-negative sequence with I AV(k) < = it
k=0
follows that AV(K) + O as k + = or alternately from (7) ¢:vi¢k +0ask+a This

can also be expressed as

2
Tl e “(1)
i 1 dt +0 as k » @ 8

rk th 1+ uT(t)u(t)

Cagse (1): If u is uniformly bounded in m"’ it follows from (1) that e is also
[_J

uniformly bounded. Since I AV(k) 1is bounded we have from (8) that e € Lz. Further
R k=0
if u 4is also bounded, then lim cl(t) = 0, Hence for a uniforaly bounded u with
| ~aed
2 wmiformly bounded derivative, LY tends to zero and Mk +0ask+w,

Cgge (i1): If in addition to being uniformly bounded u is "sufficiently rich" [9]
over an interval T atn’ % that the msatrix 'I is positive definite for all k € N,
then AV(k) < 0. Hence the paramster error vector tends to zero as k + =,

Case ({i1): A more interesting case arises when u may grow at most exponentially
and is relevant to the control problem (see comments at the end of this section).
Since condition (8) is independent of the assumption of the boundedness of u, it
follovs that ___°} . ,2 If the input satisfies the conditionf|ulls M, Juli+ ¥,

l+uu

e (¢)
for soms constants lll and nz, and hence grows at most exponentially, -

mtmsm—

/A + uT(B)ut)

has a bounded derivative and the integrand in (8) tends to zero as k + ». Hence
¢ Tatt) = @ (t) = ofsup Ju(n)f] 9
k 1 tat

or e, grows slowly [1] compared to the norm of the input vector u. Equation (9)
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plays s central role in the proof of stability of the hybrid adaptive control
problem and is discussed in section 3a .

Approach 2: In this approach the error equation (1) is modified to the equivalent

form

) (10

T 2
¢k ol(t)u(t) . (t) te [tk’tbi-l

keN
by multiplying the two sides by gl(t). Integrating over the interval [tk,tku)
yields:

t
’T{H-I

‘el ,
k .1(1) u(t)dt = f e, (t)dr

or equivalently the discrete error model

RICERIC) an
vhere ¢
k1 A “ee1 ,
r el(f)u(f)df = w(k) and f ., (t)dr 4 e(k).
& *x

For the error model (11) the adaptive law for updating ‘k ca be written by

inspection [3] as

A.k - M?- . (12)
1 + w(k) w(k)

From well known results in discrete adaptive control [3,4] it also follows that

(1) | ¢, |l 1s bounded 1£{{4 1] s bounded

(11) AOk*O as k » o
and (111) |e(k)| = o[sup[(V)}] or €(k) grows more slowly than w(K).

kav

Case (1): As in approach 1, 1if u is un:l.fonly bounded in m ' 8 and hence e(k)
and w(k) are uniformly bounded for all t ¢ l and k € N respectively. Ifl;;ll is

also bounded lim cl(t) = 0.
r..
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Case ({1): If in addition to being uniformly bounded u is sufficiently rich over
t

an interval T ,{ Hlu(f)uT(T)d‘t = Pk is positive definite fo& all 5 e N. If

V(k) = 3 Ok ¢k, the adaptive law (12) results in AV(k) = - —L-—.r-z < 0 for all

¢k¢o and k € N. Hence ¢k->0 as k +~ »,

Case (1i11): As in approach 1, the case of greatest interest arises when u ¢ L:,

ut L and grows at most exponentially. The condition |e(k)| = o[sup || w(V)] can
k3v
[b be equivalently represented as
t
- t r vl
;- 2
Ef:: f Hlel (T)dT = o[suan el(T)u(T)d‘r u]. (13)
o Lk k3v t
Equation (13) implies that a sequence {B(k)} exists with B8(k) 2 0 ¥k EN and
h.t'.
. B(k) * 0 as k ~ =, such that
i le,(0 | T]e (0] - 8P uPlar =0 ¥kew (14)
u--‘ tk
T

'! Since el(T) -0 u(t), T ¢ [tk’tk'l-l) and ¢, 1s bounded (14) can also be written as
L r"‘k+f
i |, ley@IRuR DD - 8¢ =0  FkeN (15)
= A"k
g . where v(k,T) '“¢kn | cos “’k(f)l and Nk(f) is the angle between the vectors ¢k and
- d
E u.k(t) for T € [tk’tk'l-l)' Since B(k) + 0 as k + =, gr v(k,t) is bounded and
- v(k,T) 20 for T € [tk’tk-i'l) it follows that v(k,t) + O as k + » which in turm
:: implies that
':f‘: T
e (t) = ¢ u(t) = olsupf u(){{)
2 1 k
- 27
o
o which is the same as (9) derived using approach 1.
[

b) Error Model 2:

The second error model is described by the error differential equation

e = Ae+ boly (16)

................




.........
PR -

where e(t), b € R, A € B " and is stable, (A,b) is controllable, ¢(t), u(t) € R"
and ¢(t) = ¢k' te [tk’tk-!-l) k € N where ¢k is a constant vector. In this case
the parameter error vector is to be adjusted using the input u and the state error
vactor e. Since A is a stable matrix, a symmetric positive definite matrix
P-l"r > 0 exists such thatATP+PA--Q<0.

Approach 1: Using this approach error model (16) is first modified, as in the

continuous case [l1], using a feedback term -YuTubTPe to the form
& = Ae + b[$"u - Yu'ub Pe] an

The corresponding adaptive law is the average gradient obtained in the continuous

case over one period and is given by

1 (Cerl T
8, = - = J u(7)b Pe(T)dr 18)
k T e,

Defining the Lyapunov function candidate as

1 T T
V(k) = e (t )Pe(t,) +¢ ¢ 19)
Te ko T %
Ser1 Sl
AV = - i [T )qateyar - P [ ™ et @ ut e
max / :k max ' S
—l—“ (r)rbumarll (20)
m t
Since for amy vector x(t) € R I/TJ ] x(‘»’)‘2 z (1/T “[ 8(‘!)&“ ]2
t-T
the second t;u on the right-hand-side of equation (20) doninatu the third tem
for allY 3 . Hence
ZTm T
AV(K) £ 0 ¥keN and 723:“ (21)
ain

This implies thatll¢ Wl end laCc )N are bounded 1£)¢ N snd [leCt )k are bounded and

Av(k) > 0O as k + = {,e.
kb1 fCrr1
r QT(T)QC(T)d‘l’ +0; J [cT~. )Pb]zur’ "at)dr + 0 as k + » (22)
% ®x
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2
Again, since I AV(k) is bounded e,[eTPb]u e L°,
k=0

Case (1): If u is uniformly bounded, it follows from equation (17) that e is also

wmiformly bounded. Since e ¢ L2 this results in lim e(t) = 0.

Lo
Case (i1): As in the earlier cases with error model 1, when u(*) is sufficiently
rich over a perfod T n’ V(k) is monotonically decreasing and hence Ok +0 as k + =,
Case (1i11): A somewhat more involved argument is needed when u € L:,u ¢ L“ and
8rows at most exponentially to relate the growth rates of u and ¢kTu- The exist-
'h ence of the discrete Lyapunov function assures the boundedness of e(t) at the

. discrete instants t = ¢t Since e can grow at most exponentially by equation (17)

k.

{ and since the interval ltk’f’hl-l) is uniformly bounded, e(t) is bounded for all t € R+.

& Now, the same arguments as those used in the continuous case [1l] can be used

K to demonstrate thatuw (8)¢ u“- olsup flu(t)f]] where W, (s) 2 [sI-A) L.
tat

equation (17) [¢ u-yu ub Pe] is the input to an exponentially stable system.

Since eTPbu € L2 the component of e resulting from e Pbu u must grow at a

slower rate than ull 1.e. of sup“u('r)ll] I1f this is unbounded, then the response

due to 0 u should also be o[sup“u(ﬂ‘],since we have already demonstrated that
t3T
e(t) is uniformly bounded for t ¢ R+.

Approach 2: 1In this case the error model is described by

e = Ae + bo_Tu te [t ,t,.) (23)
= Kk k? ktl

4

::fl and does not contain the feedback term as in (17). Multiplying both sides of (23)
: by CTP and equating the integrals over an interval [tk. tki-l)

o T WL Rl k1 T

- e (t)Pe(t) + ( e (1)Qe(T)dt = 2 ( e (T)Pbu (1) ¢ dt (24)
o 5 'Yy Iy y

E:‘} or

.t T

e ’k w(k) = e(k) (25)
- er1 T

- vhere 1.h.s. of (24) 1s ¢(k) and 2 (t e (t)Pbu(r)dr = w(k).Once again the adaptive
&) J

Ef:: law may be written by inspection as

_~I

E..
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2o, = —= (Kw(k) (26)

K 14w 0wk
and yields |e(k)| = o[supf w(v)i} ) 27
kv

Case (i): If u is uniformly bounded, from equation (23) we have e(t) and e(t)
uniformly bounded. Hence w(k) is uniformly bounded and €(k) + 0 as k + =, Since
Fletl ¢
[f e (1)Qe(t)dr (28)
]

%k

. t
this implies that lim eT(t)Pe(t)ltk+1 = 0 and the integral in (28) tends to zero
k

T “ir1
e(k) = e (t)Pe(t) | +
t

as k + =, Since e(t) is uniformly bounded lim e(t) = O.

Case (ii1): If u is sufficiently rich over at:; interval of length Tmin’ ¢kTu(t) =0
implies.'#k + 0 ag k + =,

Case (i1i): For the case where u grows at most exponentially we prove that

¢kTu(t) = of[sup u(T) ] by contradiction. Defining eTPb 4 e (see error model 3)

€21
(27) may be written as:

el (t)Pe(t)

t
Cee1 [ Wl g
+ e (t)Qe(t)dr
6% T,

{"k+1

-8l [ T e mumarll 29)

J
by

where B8(k) 2 0, k € N and B(k) - 0 ag k +«°, Let ¢T(t)u(t:) # o[suplu(TXl]. Then
t2T
ve can denotef u(t)l| = 0[sup|¢T(t)u(r)|]. In such a case, from (23) || e(o)ll and
t3T
(| u(c)“ grow at the same rate and equation (29) can be modified to

tk+1 T
e (1)Qe(r)dr

f
eT(cld_l)Pe(tH_I) - eT(tk)Pe(tk) + J:
W o, *
s [ e l(mar (30)
1 Jt 1
k

where Bl(k) +0 as k ~=, From (30) it follows that the sequence
T T ktl 7
{e (tkrl)Pe<tlcl-1) -~ e (tk)Pe(tk)} +0 as k+= and L e (1)Qe(t)dTr + 0 as k + =,

k
Sincele(t)“ can grow at most exponentially the latter implies that e(t) + 0 as

............................
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t + © which contradicts the assumption that|le(t)}} and {u(t)|| grow without bound.

Error Model 3:

The third hybrid error model is merely a special case of the second error
model but is important in view of its practical applications - e.g. adaptive

control of a plant with relative degree 1. It is described by the scalar differ-

ential equation
e (t) = —ae (t) + [¢ Tuo) - Ye (t)uT(t)u(t)]
1 1 k 1
1f approach 1 is used and by the equation
&,(6) = e (&) + ¢, TuCo) (1)

if approach (2) is used. The corresponding adaptive laws can be specialized from

(18) and (26) as:

1 Cet1
8¢, = - T { e, (V) u(T)dr (approach 1)
max /t (32)
and 8¢, = - eg;)w(k) (approach 2)
1+ w (Wwik)
where
A g TRl feel
e(k) = e, (t)l +a ;( e, (1) dr (33)
" x
and w(k) g 2 f el(f)u(‘f) 4t (34)
tk
In both cases it can be shown that
[#,60,a() | = olsw Rucoll (35)
M k 31
where Wn(s) = - i iR

Comments:

(1) The detailed analysis presented in this section is based on the conviction
of the authors that efficient design methods for adaptive systems can arise

only from a deeper understanding of the behavior of corresponding error
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(11)

(111)

models. For each model considered three specific cases have been discussed.

The first two assume that the input u to the error model is uniformly
bounded. The results are particularly relevant to the identification
problem where the plant to be identified is assumed to be stable and

the input to the plant is uniformly bounded. When the hybrid adaptive
algorithms described in this section are used to identify such a plant,
the outpué errors vill tend to zero and the parameters will tend to the
true values if the input is sufficiently rich. The error model used and
the specific algorithm chosen depend upon the parametrization of the plant
and the sampling period T.

The main result of this section is relevant to the control problem as
well as identification problems where the vector u cannot be guaranteed
to be uniformly bounded a priori (e.g. the parallel model). When any
one of the adaptive laws is used in such cases Okru (and Wk(.)¢kru in
error models 2 and 3) is shown to grow asymptotically at a rate slower
than that at which u)q:llu(t)l grows. As shown in the next section this
is central to the p:;of of global stability of the hybrid adaptive control
problem.

The two approaches used to develop the adaptive algorithms in the three
error models are conceptually different. In the first approach, the
discrete Lyapunov function is a quadratic form in the parameter error
vector (model 1) or both parameter and output vectors (models 2 and 3).
The direction in which A¢ is adjusted is the average gradient of elz(t)
with respect to ¢ over an interval [tk’tk+1)' In contrast to this the
second approach attempts to minimize the integral of clz(t) over an
interval so that ¢ is the gradient of this performance index. As seen
from the simulation results in section 4, the two adaptive algorithms
lead to quite different responses of the overall system. Approach 1

is found to be more effective for smaller values of T, vhile approach 2

.....
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is large. Using the same Lyapunov

is significantly better when T

k
function it can be shown that a convex combination of the two adaptive

lawvs also assures the boundedness of the parameter errors. Hence such
a combination of the two may be used in practice to realize their
combined advantages.

(iv) As in purely discrete and continuous systems the adaptive laws in hybrid
systems are also chosen to assure that the parameter vector ¢ varies
slowly as k + =, In the first error model this is accomplished using
a factor -—Lr in the adaptive law (4) in the first approach and the
factor 1w 1 using the second (12). The feedback

1+ w (Ww(k)
term in (17) serves the same purpose in error models 2 and 3 when the

first approach is used and is omitted in the second approach where a

quadratic factor 1]1';— is used (26).
14+ w (Kw(k)
3. Application, Extension and Refinement:

The concepts and techniques developed in section 2 find wide application in

adaptive systems where practical considerations demand a hybrid approach. The
most obvious of such applications is the design of stable hybrid adaptive con-
trollers and is considered in section 3a. The same concepts can also be extended
to discrete systems where data is collected at a faster rate than that at which

the parameters are adjusted. This is briefly outlined in 3b. For the sake of
completeness it i{s also shown in section 3c that algorithms of an integral

type [5] suggested for continuous systems can be considered as natural gemerali-

\ zations of the algoritims developed for hybrid and discrete systems. Finally,

h vell known methods for adjusting the adaptive gain matrix in a time-varying fashion
: e.g. recursive least-squares, to improve the speed of response can be readily

axtended to the above cases and are discussed in 3ec.
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R a) Stable Hybrid Adaptive Control:
' A hybrid adaptive control system is one in which a plant with unknown parameters

which operates in continuous time is controlled by adjusting a controller parameter
vector only at discrete instants. In [10] the adaptive law (4) was used to demon-
strate the global stability of the overall system. Similar arguments can be used
to show that all the other adaptive algorithms in section 2, when properly applied
also result in global stability. For single-input single-output systems the
adaptive algorithms generated using the first and thi~d error models are suitable;
the second error model has applications in multivariable control. In this section
we merely outline the principal steps involved in the proof of global stability.

A linear time-invariant plant with unknown parameters is to be controlled
adaptively. The input and output of the plant are u(:) and yp(-) respectively
and the plant transfer function Wp(s) is rational with known order and relative
degree and all zeros in the left half plane. A reference model has a stable
rational transfer function Wu(s) and has the same relative degree as the plant.
The input r(*) of the model is piecewise continuous and wniformly bounded. The
output of the model is y'(-) and the aim of adaptive control is to generate an
input u(+) to the plant using a differentiator free controller so that
1im |el(t)| = 1im [yp(t) - ym(t)| = 0.
toe te

The solution to this problem for both the continuous [1,2] and discrete cases
(3,4] is well known. In the former using the input u(¢) and output yp(-) the
controller generates a vector of semsitivity functions w(-) so that the input u(s)

to the plant can be expressed as

eT(t)v(t.) = u(t) ¥t t, (36)

2o+l

+ ®
vhere in general 8, w: R -+ R . It is known that a constant vector 9 exists

*
such that wvhen 6(t) = 6 the transfer function of the plant together with the

........
............




controllar is Wu(a) and t_:l: Cl(t) = 0. The aim of the adaptation procedure is
to adjust 6(:) (and hence 9(t)) continuously so that this asymptotic behavior is
realized.

In the hybrid adaptive control problem, the controller structure is identical

to that used in the continuous case but the parameter vector 8(t) is adjusted

only at discrete instants so that

8(t) = Bk te “k’tbi-l) (37
keN
2o+l ® A
wvhere ek € R and is a constant vector. If 8(t) - 8 = ¢(t) the parameter error
vector ¢(t) is also plecewise constant and ¢(t) = ’k for t € [tk,tk_u) where

*
9k -0 = Ok. The error equation for the control problem can be written as
T
Hu(s)é (t)w(e) = 01(:) (38)

Special cases exist for the control problem, as for szample when wu(-) is a strictly
positive real transfer function. We consider below, only the general case when
Wu(s) has a relative degree n* 2 2.

To generate an adaptive law for adjusting 6(t), an auxiliary signal y‘(-)
is added to 01(-) vhere

7, (8 = (6T (W (DT - W ()0 (8) Iu(D) (39)
so that 47D = o (e) + 3 (&) = ¢ (D) (40)

wvhere cl(t) is referred to as the augmented error. Using the observed values of
sl(') and z(*) the control paramster vcctor'e(-) (and hence ¢(*)) is adjusted and
it 1is then shown that this results in a bounded plant output.

In section 2, the principal result of the analysis was that the adaptive laws

(4) end (12) when applied to equation (40) assure that
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€, (8) = ¢7(D)E(t) = olsup WE(D) 4D

t2T
Further, since Z(t) = Wu(a)lw(t) and A¢(t) > 0 as t + » it can be shown {[10]
that
$T(DW(E) = $T(D)Z(t) + olsup Yw(D\]

€21
(42)

= o[sup Yw(Ol\}
t3T

From equation (38) it follows that the output error 01(-) and hence the plant output
yp(') can grow at most at a rate slower than sup |w(t)Y which in turn assures their

t3T
boundedness.

b) Exteasion to Systems with Two Time Scales:

The hybrid error models described in section 2 can be considered as systems
which operate on two time scales -- a time scale associsted with the continuous
time functions and a second with the discrete paramsters. Such situations also
arise frequently in purely discrete systems where the inputs and outputs are
observed at a certain rate but the control paramsters are adjusted at a slower
rate. The concepts established in section 2 are shown in this sectiom to carry
over directly to such systems also. Further, it is interesting to note that
algorithms recently suggested for adjusting control parameters in continuous
time systems [5] can be interpreted as the continuous counterparts of such dis-
crete time systems operating on two time scales. Hence the methods suggested in
section 2 can be conlidcud. to provide a unified approach to two time scale prob-
lems in discrete, continuous and hybrid systems.

(1) Discrete Time Models:

The first error model corresponding to error model (1) can be described by

the equation

T
Qk u e k, L ¢ N, £ ¢ [kT,(k+1)T] (43)

- - ™ T . - R . ST PR DT B . . e 0. .
PR P W R L W P AL R W R W WP SR ST SR A S I SO WAL VTN WS 30 WL PO
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vwhere ’k is a constant vector in the interval [kT,(kt+1)T].Using approach 1 it can

be shown that if the adaptive law

(k+1)'1'-1e u

1 —41 4
¢ -¢ =Ap =-~= L -R ¢ (44)
(let1) k k Tjald 14 “11“1 k' k

is used, V(k) = -;'- 0: is a Lyapunov function. This, in tumn, impliesnttk“ is

%
bounded 1f{ ’o‘ is bounded and

av(k) & v0er) - w0 = - o TiX - FRIRG <0 (45)
wvhich ylelds
1in ¢y -0 1eHN (46)

Equation (46) assures global stability of the adaptive control problem when the
adaptive law (44) is used to adjust the control parameters in a discrete adsptive
systea.

Using the second approach, new varisbles €(k) and (k) are defined as

(ktl) T-1 2 (e+1)T~1
I e f o) 3 L eue 4¢) 47)
A=kT L=k

and the error model (43) can be expressed as
0,20 = e(® ke “8)

The corresponding adaptive law is given by

A‘k - _‘.!.%LEQL_ (49)

1+ % (k(k)

and assures that lim '1 «0,

= o

u, u
11
The other adaptive laws for the discrete error models corresponding to hybrid error
nodels 2 and 3 in section 2 can be derived in a similar fashion.

.- .‘ \' -' .'- .'- ‘.' '-' ." —.' -.‘ I‘ “ ." .' - ., .. - - - . . - - - . . . . . . . R . R
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Xy (11) Continuous Time Models:
. In the continuous time error model

o |

¢T(t)u(t) = ¢, () tel (50)
- it is well known that the adaptive lavw

- T (GG b
,-;'.j t) Ll T .

:- 1+ u (t)u(t)
.

. results in a bounded parameter error vector. Recently other continuous adaptive

:f; laws have been suggested [5] which utilize past input-output data in adjusting

adapt.ve paramsters. We shall refer to such adsptive algorithms as integral

e algorithms in contrast to the point algorithm (S1). By s proper definition of

the error model such algorithms can be shown to be generalizations of the hybrid

J and discrete algorithms developed in sections 2 and 3b.
.: Let the unknown parameter error vector at time t be ¢(t) and let the output

Vi +_ +

¥ 0,(*,*):8 x E + R be dafined by

&

& T +

- ¢ (t)u(r) = cl(t,r) TSt T, teR. (52)
-2 The adaptive law

\I

- . t u(r)e (t,7)

. L) = -% f —% - dr (53)
- top 1+ u (Du()

’_‘.: which uses input-output data over the interval [c-T,t) is s generalization of (44)
& for the discrete case. However, unlike the discrete algorithm, (53) poses two
major difficulties in implementation. The first involves the storage of the values
1: of the function u(*) over the interval of integration. The second and significantly
1

-~ greater problem is caused by the fact that cl(t.'l') cannot be measured directly for
4 use in the adaptive law and camnot be computed from equation (53) since ¢(t) is

:’:1 unknowm.

N

3




The above problem can be circumvented by noting that error models of the type

(52) arise in adsptive situations (as described in section 3a) where a parameter
vector 6(t) is adjusted and has to evolve to a desired but unknown constant vector
' *

0 1... ‘(t) - O(t) - 0 .

Hence the error model (52) becomes

(o¢e) - "1 u(r) = e (t,0) (54)
or 6T (DU - 3 (1) = (L, (55)

vhere yn(t) is the signal produced by the model and can be measured. Hence in such

cases the adaptive law can be implemented as

T
cu(t)u (1) o(t) - u(t)y (t»

4o = B = -%J{

=T 1+ T (Dulr) J

As mentioned earlier, the implementation of (56) is rendered difficult by the
fact that the values of u(*) have to be storad over a window of length T. To over~
come this problem the length of the interval T is increased to t so that the entire

Ja(e-1) i{s included to assure the conver-

past data 1is used but a weighting factor e
gence of the integral. Such an exponentially weighted adaptive algorithm has the

form

u(r)u (r)e(e) - u(‘l’)y (r)}
drt sn

¥(e) = B(e) = ( qa(e- '){ 2
s 1+ w(Du(o)

wvhich can be conveniently realized by the matrix differential equations

a(t) = -R(t)@(e) - r(t) 8(ey) = 0

T
R(e) = -qr(e) + Qe ey =0 (58)

1+ u(t)u(e)

. (Dy (1)

B0 = ~qr(e) + ——R ee) = 0.
1+ u (v)ulr)

..........
..
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The adaptive law (58) is precisely the one suggested in [5].
In conclusion, the approach developed in section 2 is seen to unify discrete,

continuous and hybrid adaptive algorithms with two time scales.

c¢) Adaptive Gain:

In the discussions in the preceding sections, adaptive gains were not included

in the adaptive laws to focus attention on the principal results. Experience with

complex adaptive systemé has however shown that the speed of convergence of the

algorithms depends critically on the choice of the adaptive gains. In particular a
time-varying gai:n matrix obtained from least-squares considerations is found to be
generally accepfable for most applications. In this section it is briefly shown
that simtlar time-varying gain matrices can also be included in the hybrid adaptive
laws. The details are included only for the first error model. Similar arguments
carry over to the other error models also.

If the first error model is described by

¢kTu(t) = cl(t) te [tk’:ku) (59)

let ¢
R 41 f ktl umuTm dr .
Ty €, 1+ ut(‘t)u(‘l')

The adsptive gain matrix I, is defined by

k
-1 -1
I'H_I- I‘k +* % ro s X (60)

and the adaptive law is given by

T, “ktl o, (D) ult)
O I

dt (61)
Ty

g, 1+ u(Du(n)
For the system described by equations (59), (60) and (61) it can be shown that

1 T.-1
V(k) = 2 ’k l'k ¢k (62)




is a Lyapunov function resulting in

el o 2(ar
W g [ -
ke 14w (Du@ 1 !

kLt

Tl e (D0 (1)

aq[I-T_ R IT
1+ uT(T)u(T) Ak

rtld-l el(‘r) u(t)

x T dt (63)
€, 1+ u (Vu(r)
£0 1fI-I‘kRk>0 ¥ kelN
From (63) it follgws thacl{ ¢ (| is bounded 1f 14 Y s bounded, 4¢ + 0 as k + =
f‘k"l . 9‘(':) « 0 Tk
and j dt +0 as k +=, If u(*) grows at most exponentially,
t 1+ u ((@u()

the la%t result implies that ol(t:) = o supljuCt)i{].
4. Simulations: =

The error models described in section 2 and their applications described in
section 3 have been simulated extensively on the digital computer. We include in
this section four typical examples which compare the effectiveness of the two
adaptive approaches proposed in section 2. In all cases the parameters are ad-

justed periodically with a period T, so that t. = kT (k € N). The main interest

k
in these simulations is on the effect of T on the speed and accuracy of the

responses.

The first hybrid error model, described by the equation (1) was simu-

E-.

lated wvhen u(t),9(t) € Rz and the input vector u is defined by
ul(t) = gin(.75¢) uz(r.) = gin(2.6t)

Figures la-1d show the evolution of the output error ol(t) and the parameter error

vector ¢(t) when approaches 1 and 2 are used. In Figures la and 1b T = 0.5 while
T = 5.0 in Figures 1lc and 1d. Approach 1 results in rapid convergence of cl(t) and
¢(t) for T = 0.5. In contrast to this the convergence is gcry slow vhen approach 2

f ekl
is used. This may be attributed to the fact that w(k) 4 J cl(r)u(r)dt does not

“x
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vary adequately over an interval when the period T is small. As T is increased

the response using the first approach deteriorates while that using the second
spproach improves markedly. With T = 5 it is seen that ¢ decreases to a value
close to zero at the end of one period.

Exgmple 2: Figures 2a-2d show the evolution of cl(t) and ¢(t) vhen the same
experiments as in example 1 were performed on error model 3. The basic features
of the responses using the two approaches remain the same indicating that the
approach rather than the specific error model chosen governs the behavior of the
transient response.

Exsmple 3: In this example, all the signals of interest are discrete, though
input and output are defined for all k ¢ X and the parameter error vector is
adjusted periodically with period T ¢ N. In the second order system simulated

ul(k) = gin(.05k) uz(k) = gin(.25k)
The adaptive law used in this case to adjust A¢ had the form
84(K) = 884, () + (1-6)49, (k) 0sésl

vhere Ml(k) ad Mz(k) are the adaptive laws given by the two approaches. As
might be expected § % 1 for small valuas of T and § 28 O for large values of T

are fomd to be satisfactory as seen in Figure 3a-3d.

Exapple 4: The behavior of the error model when the input grows at most exponentially
has been stressed throughout the paper. In particular the main result of section 2

was that in such a case the output error would grow at most at a slower rate as
compared to the input. The experiments in this exsmple were performed to verify
this result. If u(t) has the form

u (e) = e *Ca1n(.75¢0)

uz(t) - ."“-m(z.sc)

I R I IREIA
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it is seen from Figure 4a-4b ¢, - 0 as k + » so that el(t) +0as t+w», In

this case u grows in an unbounded fashion but is sufficiently rich. However,

when only the first component u,(t) of u(t) grows exponentially, ¢, does not

tend to zero but asymptotically approaches a constant value orthogonal to the

vector [1,0]. This can be seen in Figure 4c-4d.
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